
Post-Translational Modification Service Overview

Introduction

Post-translational modification (PTM) of proteins refers to the chemical changes proteins may undergo after translation. In other words, PTMs are chemical modifications of a polypeptide chain that occur after DNA has been transcribed into RNA and translated into protein.

Cellular post-translational modifications

Ole N. Jensen, et al., Interpreting the protein language using proteomics, (2006)

PTM modulates protein activity and macromolecular interactions and is involved in a range of fundamental molecular processes. Common PTMs include Phosphorylation, Glycosylation, Acetylation and Ubiquitination. As a result, identifying and understanding PTMs is key for the study of cell biology and the treatment and prevention of disease.

PTM TYPE	BIOLOGICAL FUNCTION	ENRICHMENT METHOD	PTM RESIDUES	MASS (ΔM, DA)
Phosphorylation	Phosphorylation is the most common mechanism of regulating protein function and transmitting signals throughout the cell.	IMAC (immobilized metal ion affinity chromatography),TiO ₂ , ZrO ₂ , Fe ₂ O ₃ ,Antibody	Ser, Thr, Tyr	80
Glycosylation	Glycosylation is the reaction in which a carbohydrate is attached to a hydroxyl or other functional group of another molecule, and is key for molecular recognition, signal transduction and immune response.	HILIC, MAX, Lectin, Antibody Hydrazine chemical method	N-linked (Asn) O-linked (Ser, Thr) GPI anchor	> 800 203, > 800 > 1,000

Post-Translational Modification Service Overview

Acetylation	Acetylation describes a chemical reaction that introduces an acetyl functional group into a chemical compound and is involved with gene expression regulation, chromatin structure, DNA damage repair and cancer development.	Antibody	N-terminal residue, Lys	42
Ubiquitylation	Ubiquitylation plays an important role in localization, metabolism, function, regulation, and degradation, and is closely related to the occurrence of diseases such as tumors and cardiovascular diseases.	Antibody	Lysine residue	114

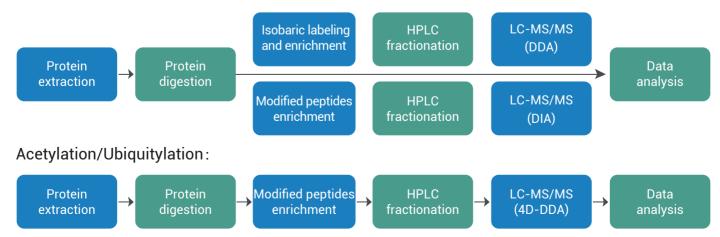
BGI Genomics has extensive experience in the field of PTM Proteomics and has developed reliable workflows using market leading technologies and a bioinformatics infrastructure that is second to none.

Common Challenges with PTM Proteomics Studies

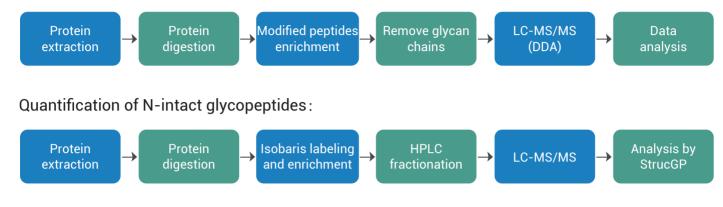
Various Kinds of PTM and High Complexity

Low Abundance

Dynamic Changes


Research Applications

- Disease biomarker research
- Drug efficacy evaluation research
- Plant disease resistance and insect resistance research
- Microbial stress and adversity physiology research
- Cell recognition and signal transduction research
- Cancer cell development research


Post-Translational Modification Analysis Workflow

Phosphorylation:

Glycosylaion

Quantification of N-glycosylated peptides:

BGI Genomics Service Advantages

High Enrichment	High Resolution	High Quantification	Comprehensive
Efficiency		Accuracy	Information Analysis
Our extensive experience	Our expertise allows us to	Our isobaric labeling and	We provide motif analy-
in enrichment methods	accurately identify protein	DIA analysis services	sis and kinase prediction
in order to ensure the	modification sites in order	enables accurate	analysis with other
optimum enrichment for	to identify single amino	quantification of modi-	custom bioinformatics
different peptides.	acid site modifications.	fied peptides.	solutions available.

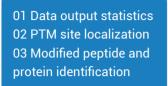
Bioinformatics Analysis Standard Workflow

Standard Protein PTM Quantification:

Identification

- 01 Statistics of modified protein identification
- 02 Statistics of PTM sites
- 03 Quality evaluation of modified protein identification
- 04 Motif distribution analysis of PTM sites

Protein PTM Quantification


Protein Function Annotation 01 GO annotation 02 COG/KOG annotation 03 Pathway annotation

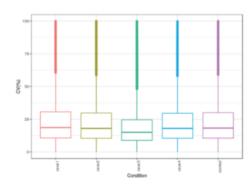
Quantification

01 Statistics of differential modified peptides02 Quantitative repeatability assessment03 Cluster analysis of differential modified peptides

Differential Protein Function Enrichment 01 GO enrichment analysis 02 Pathway enrichment analysis 03 COG/KOG annotation 04 Protein interaction analysis 05 Protein subcellular localization analysis

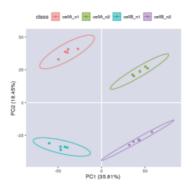
Standard Protein PTM Identification:

PTM identification of purified protein


Modified protein profiling

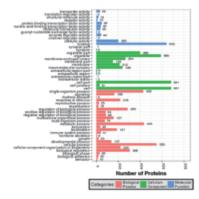
01 Modified protein GO annotation02 Modified protein COG annotation03 Modified protein pathway analysis04 Motif distribution of PTM sites

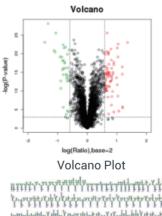
Customized Service:


Kinase prediction analysis Quantitative proteomics and phosphoproteomics correlation analysis

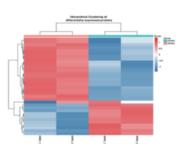
Examples of Data QC Analysis - Stability and Repeatability

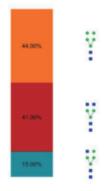
CV Distribution


Examples of Identification and Quantification Analysis


PCA Analysis

4 3-9g2-1-


Motif Analysis of PTM Site


GO Function Annotation

Summary of Glycan Structure

Cluster Analysis

Glycoform Distribution

General Sample Requirements

Sample type		Sample amount category	Phosphorylation	Acetylation/ Ubiquitylation	Glycosylation
Animal	Common animal tissues: animal internal organs (heart, liver, spleen, lung, kidney), skin, muscle, brain, etc	Recommended	≥ 20 mg	≥ 2 g	≥ 100 mg
		Minimum	≥ 10 mg	≥ 75 mg	≥ 50 mg
	Mollusks (Toxoplasma, Schisto- somiasis, Drosophila, Acarid, Plutella xylostella, Laodelphax, Cestode, Cicada, Hematodinium, etc.)	Recommended	≥ 20 mg	≥ 2 g	≥ 100 mg
		Minimum	≥ 10 mg	≥ 75 mg	≥ 50 mg
Cell	Suspended cells, adherent cells	Recommended	≥ 2×10 ⁷	≥ 5×10 ⁸	≥ 1×10 ⁸
		Minimum	≥ 2×10 ⁷	≥ 3×10 ⁷	≥ 5×10 ⁷
	Twigs of plants (leaf buds, tender leaves), algae	Recommended	≥ 2 g	≥ 3 g	/
		Minimum	≥1 g	≥ 3 g	
	Old leaves, roots, stems, bark of plants	Recommended	≥ 4 g	≥ 5 g	
Plant		Minimum	≥ 2 g	≥ 50 mg	
	Plant buds, pollen	Recommended	≥ 200 mg	≥ 3 g	
		Minimum	≥ 100 mg	≥ 3 g	
	Plant seeds (rice/wheat seeds, etc.), fruits (apples, peaches, pears)	Recommended	≥ 500 mg	≥ 5 g	
		Minimum	≥ 200 mg	≥1g	
Microo- rganism	Prokaryotic bacteria (E. coli, Staphylococcus aureus, etc.), fungi (yeast, etc.)	Recommended	Thallus ≥ 200 mg cells ≥ 2×10 ⁷	150 mg-2 g	/
Protein solution	Complex protein solution, protein powder	Recommended	≥ 1 mg, ≥ 0.5 µg/µL	≥ 10 mg	≥ 5 mg
		Minimum	≥ 0.5 mg, ≥ 0.5 µg/µL	≥ 3 mg	≥ 3 mg

Turn Around Time

РТМ ТҮРЕ	Phosphorylation	Glycosylation	Acetylation/Ubiquitylation
TURN AROUND TIME	3-5 weeks	4-5 weeks	3-5 weeks

Request for Information or Quotation

Contact a BGI Genomics representative to discuss how we can meet your specific needs or for expert advice on experiment design, from sample to bioinformatics.

info@bgi.com www.bgi.com

For Research Use Only. Not for use in diagnostic procedures (except as specifically noted).

Copyright[©] BGI Genomics 2023. All trademarks are the property of BGI Genomics or their respective owners. This material contains information on products targeted to a wide range of audiences and could contain product details or information otherwise not accessible or valid in your country. Please be aware that we do not take any responsibility for accessing such information, which may not comply with any legal process, regulation, registration, or usage in the country of your origin. Please get in touch with a representative for regional availability. The company reserves the right of final interpretation.

We Sequence, You Discover